
Java Memory and Performance Interview 
Questions

How would you improve performance of a Java application?
• Pool valuable system resources like threads, database connections, socket connections etc. 

Emphasize on reuse of threads from a pool of threads. Creating new threads and discarding 
them after use can adversely affect performance. Also consider using multi-threading in your 
single-threaded applications where possible to enhance performance. Optimize the pool 
sizes based on system and application specifications and requirements. Having too many 
threads in a pool also can result in performance and scalability problems due to consumption 
of memory stacks and CPU context switching (i.e. switching between threads as opposed to 
doing real computation.). 

• Minimize network overheads by retrieving several related items simultaneously in one 
remote invocation if possible. Remote method invocations involve a network round-trip, 
marshaling and unmarshaling of parameters, which can cause huge performance problems if 
the remote interface is poorly designed.

Most applications need to retrieve data from and save/update data into one or more databases. 
Database calls are remote calls over the network. In general data should be lazily loaded (i.e. load 
only when required as opposed to pre-loading from the database with a view that it can be used 
later) from a database to conserve memory but there are use cases (i.e. need to make several 
database calls) where eagerly loading data and caching can improve performance by minimizing 
network trips to the database. Data can be eagerly loaded with a help of SQL scripts with complex 
joins or stored procedures and cached using third party frameworks or building your own 
framework.

How would you refresh your cache?
You could say that one of the two following strategies can be used: 

• Timed cache strategy where the cache can be replenished periodically (i.e. every 30 minutes, 
every hour etc). This is a simple strategy applicable when it is acceptable to show dirty data 
at times and also the data in the database does not change very frequently. 

• Dirty check strategy where your application is the only one which can mutate (i.e. modify) 
the data in the database. You can set a "isDirty" flag to true when the data is modified in the 
database through your application and consequently your cache can be refreshed based on 
the "isDirty" flag.



How would you refresh your cache if your database is shared by more than one 
application?
You could use one of the following strategies: 

• Database triggers: You could use database triggers to communicate between applications 
sharing the same database and write pollers which polls the database periodically to 
determine when the cache should be refreshed. 

• XML messaging to communicate between other applications sharing the same database or 
separate databases to determine when the cache should be refreshed. 

• Optimize your I/O operations: use buffering when writing to and reading from files and/or 
streams. Avoid writers/readers if you are dealing with only ASCII characters. You can use 
streams instead, which are faster. Avoid premature flushing of buffers. Also make use of the 
performance and scalability enhancing features such as non-blocking and asynchronous I/O, 
mapping of file to memory etc offered by the NIO (New I/O). 

• Establish whether you have a potential memory problem and manage your objects 
efficiently: remove references to the short-lived objects from long-lived objects like Java 
collections etc to minimize any potential memory leaks. Also reuse objects where possible. 
It is cheaper to recycle objects than creating new objects each time. Avoid creating extra 
objects unnecessarily. For example use mutable StringBuffer/StringBuilder classes instead 
of immutable String objects in computation expensive loops and use static factory methods 
instead of constructors to recycle immutable objects. Automatic garbage collection is one of 
the most highly touted conveniences of Java. However, it comes at a price. Creating and 
destroying objects occupies a significant chunk of the JVM's time. Wherever possible, you 
should look for ways to minimize the number of objects created in your code: 

• For complex objects that are used frequently, consider creating a pool of recyclable 
objects rather than always instantiating new objects. This adds additional burden on 
the programmer to manage the pool, but in selected cases it can represent a 
significant performance gain. Use flyweight design pattern to create a pool of shared 
objects. Flyweights are typically instantiated by a flyweight factory that creates a 
limited number of flyweights based on some criteria. Invoking object does not 
directly instantiate flyweights. It gets it from the flyweight factory, which checks to 
see if it has a flyweight that fits a specific criteria (e.g. with or without GST etc) in 
the pool (e.g. HashMap). If the flyweight exists then return the reference to the 
flyweight. If it does not exist, then instantiate one for the specific criteria and add it 
to the pool (e.g. HashMap) and then return it to the invoking object. 

• If repeating code within a loop, avoid creating new objects for each iteration. Create 
objects before entering the loop (i.e. outside the loop) and reuse them if possible. 

• Use lazy initialization when you want to distribute the load of creating large amounts 
of objects. Use lazy initialization only when there is merit in the design.

• Where applicable apply the following performance tips in your code: 
• Use ArrayLists, HashMap etc as opposed to Vector, Hashtable etc where possible. 

This is because the methods in ArrayList, HashMap etc are not synchronized (Refer 
Q15 in Java Section). Even better is to use just arrays where possible. 

• Set the initial capacity of a collection (e.g. ArrayList, HashMap etc) and 
StringBuffer/StringBuilder appropriately. This is because these classes must grow 
periodically to accommodate new elements. So, if you have a very large ArrayList or 
a StringBuffer, and you know the size in advance then you can speed things up by 
setting the initial size appropriately. 

• Minimize the use of casting or runtime type checking like instanceof in frequently 
executed methods or in loops. The "casting" and "instanceof" checks for a class 
marked as final will be faster. Using "instanceof" construct is not only ugly but also 



unmaintainable. Look at using visitor pattern 
• Do not compute constants inside a large loop. Compute them outside the loop. For 

applets compute it in the init() method. Avoid nested loops (i.e. a "for" loop within 
another "for" loop etc) where applicable and make use of a Collection class 

• Exception creation can be expensive because it has to create the full stack trace. The 
stack trace is obviously useful if you are planning to log or display the exception to 
the user. But if you are using your exception to just control the flow, which is not 
recommended, then throw an exception, which is precreated. An efficient way to do 
this is to declare a public static final Exception in your exception class itself. 

• Avoid using System.out.println and use logging frameworks like Log4J etc, which 
uses I/O buffers 

• Minimize calls to Date, Calendar, etc related classes.
For example: 

//Inefficient code
public boolean isInYearCompanyWasEstablished(Date 
dateSupplied) {
Calendar cal = Calendar.getInstance();
cal.set(1998, Calendar.JAN, 01,0,0,0); //Should be read 
from a .proprerties file
Date yearStart = cal.getTime();
cal.setTime(1998,Calendar.DECEMBER, 31,0,0,0);//Should be 
read from .properties.
Date yearEnd = cal.getTime();
return dateSupplied.compareTo(yearStart) >=0 &&
dateSupplied.compareTo(yearEnd) <= 0;
} 

The above code is inefficient because every time this method is invoked 1 "Calendar" 
object and two "Date" objects are unnecessarily created. If this method is invoked 50 
times in your application then 50 "Calendar" objects and 100 "Date" objects are 
created. A more efficient code can be written as shown below using a static initializer 
block: 

//efficient code
private static final YEAR_START;
private static final YEAR_END;
static{
Calendar cal = Calendar.getInstance();
cal.set(1998, Calendar.JAN, 01,0,0,0); //Should be read 
from a .proprerties file
Date YEAR_START = cal.getTime();
cal.setTime(1998,Calendar.DECEMBER, 31,0,0,0);//Should be 
read from .properties.
Date YEAR_END = cal.getTime();
}
public boolean isInYearCompanyWasEstablished(Date 
dateSupplied) {
return dateSupplied.compareTo(YEAR_START) >=0 &&
dateSupplied.compareTo(YEAR_END) <= 0;
} 

No matter, how many times you invoke the method 



isInYearCompanyWasEstablished(""), only 1 "Calendar" object 2 "Date" objects are 
created, since the static initializer block is executed only once when the class is 
loaded into the JVM. 

• Minimize JNI calls in your code.

How would you detect and minimize memory leaks in Java?
In Java, memory leaks are caused by poor program design where object references are long lived 
and the garbage collector is unable to reclaim those objects. 

Detecting memory leaks:
• Use tools like JProbe, OptimizeIt etc to detect memory leaks. 
• Use operating system process monitors like task manager on NT systems, ps, vmstat, iostat, 

netstat etc on UNIX systems. 
• Write your own utility class with the help of totalMemory() and freeMemory() methods in 

the Java Runtime class. Place these calls in your code strategically for pre and post memory 
recording where you suspect to be causing memory leaks. An even better approach than a 
utility class is using dynamic proxies or Aspect Oriented Programming (AOP) for pre and 
post memory recording where you have the control of activating memory measurement only 
when needed.

Minimizing memory leaks:
In Java, typically memory leak occurs when an object of a longer lifecycle has a reference to objects 
of a short life cycle. This prevents the objects with short life cycle being garbage collected. The 
developer must remember to remove the references to the short-lived objects from the long-lived 
objects. Objects with the same life cycle do not cause any issues because the garbage collector is 
smart enough to deal with the circular references 

• Design applications with an object’s life cycle in mind, instead of relying on the clever 
features of the JVM. Letting go of the object’s reference in one’s own class as soon as 
possible can mitigate memory problems. Example: myRef = null; 

• Unreachable collection objects can magnify a memory leak problem. In Java it is easy to let 
go of an entire collection by setting the root of the collection to null. The garbage collector 
will reclaim all the objects (unless some objects are needed elsewhere). 

• Use weak references if you are the only one using it. The WeakHashMap is a combination of 
HashMap and WeakReference. This class can be used for programming problems where you 
need to have a HashMap of information, but you would like that information to be garbage 
collected if you are the only one referencing it. 

• Free native system resources like AWT frame, files, JNI etc when finished with them. 
Example: Frame, Dialog, and Graphics classes require that the method dispose() be called 
on them when they are no longer used, to free up the system resources they reserve.



Why does the JVM crash with a core dump or a Dr.Watson error?
Any problem in pure Java code throws a Java exception or error. Java exceptions or errors will not 
cause a core dump (on UNIX systems) or a Dr.Watson error (on WIN32systems). Any serious Java 
problem will result in an OutOfMemoryError thrown by the JVM with the stack trace and 
consequently JVM will exit. These Java stack traces are very useful for identifying the cause for an 
abnormal exit of the JVM. So is there a way to know that OutOfMemoryError is about to occur? 
The Java J2SE 5.0 has a package called java.lang.management which has useful JMX beans that we 
can use to manage the JVM. One of these beans is the MemoryMXBean. An OutOfMemoryError 
can be thrown due to one of the following 4 reasons: 

• JVM may have a memory leak due to a bug in its internal heap management 
implementation. But this is highly unlikely because JVMs are well tested for this. 

• The application may not have enough heap memory allocated for its running. You can 
allocate more JVM heap size (with Xmx parameter to the JVM) or decrease the amount of 
memory your application takes to overcome this. To increase the heap space: 

java -Xms1024M -Xmx1024M

Care should be taken not to make the -Xmx value too large because it can slow down your 
application. The secret is to make the maximum heap size value the right size. 

• Another not so prevalent cause is the running out of a memory area called the "perm" which 
sits next to the heap. All the binary code of currently running classes is archived in the 
"perm" area. The "perm" area is important if your application or any of the third party jar 
files you use dynamically generate classes. For example: "perm" space is consumed when 
XSLT templates are dynamically compiled into classes, J2EE application servers, 
JasperReports, JAXB etc use Java reflection to dynamically generate classes and/or large 
amount of classes in your application. To increase perm space: 

java -XX:PermSize=256M -XX:MaxPermSize=256M
• The fourth and the most common reason is that you may have a memory leak in your 

application Know your worst friend, the Garbage Collector 

So why does the JVM crash with a core dump or Dr.Watson error?
Both the core dump on UNIX operating system and Dr.Watson error on WIN32 systems mean the 
same thing. The JVM is a process like any other and when a process crashes a core dump is created. 
A core dump is a memory map of a running process. This can happen due to one of the following 
reasons: 

• Using JNI (Java Native Interface) code, which has a fatal bug in its native code. Example: 
using Oracle OCI drivers, which are written partially in native code or JDBC-ODBC bridge 
drivers, which are written in non Java code. Using 100% pure Java drivers (communicates 
directly with the database instead of through client software utilizing the JNI) instead of 
native drivers can solve this problem. We can use Oracle thin driver, which is a 100% pure 
Java driver. 

• The operating system on which your JVM is running might require a patch or a service pack 


	Java Memory and Performance Interview Questions
	How would you improve performance of a Java application?
	How would you refresh your cache?
	How would you refresh your cache if your database is shared by more than one application?
	How would you detect and minimize memory leaks in Java?
	Detecting memory leaks:
	Minimizing memory leaks:

	Why does the JVM crash with a core dump or a Dr.Watson error?
	So why does the JVM crash with a core dump or Dr.Watson error?


